If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-136=0
a = 1; b = 2; c = -136;
Δ = b2-4ac
Δ = 22-4·1·(-136)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{137}}{2*1}=\frac{-2-2\sqrt{137}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{137}}{2*1}=\frac{-2+2\sqrt{137}}{2} $
| 16=m+19 | | 5t^2-0.5t-1=0 | | F(x)=-3x^2-2x+8 | | 2(x-10=-4 | | 8x-(3+5x)=2x | | 6v2+2=0 | | 8u2+7=0 | | 9v2+6v+1=0 | | -5x+31=66 | | 3p2+3p=0 | | 3w2+3w+5=0 | | 8q2+8q+5=0 | | 4r2+8r+2=0 | | 6x2+9x+2=0 | | 7w2+7w+9=0 | | 4v2+5v+8=0 | | 2z2+4z+7=0 | | 8x2+3x+5=0 | | 1.6x-0.8=0.8+1.6 | | 3^x+1=3^2x+5 | | 196+3v=180 | | 3=a-9 | | 0=-3y-5y | | 0=4e+4e | | x-8+47=90 | | 6=5p-3p | | 5x-x/2=63 | | 18x+95=180 | | 4/300=2.5/x | | -21=4w+3w | | 3.5(2.25)=12(x) | | (3.5x2.25)=(9x) |